
Architectural and Compiler Techniques for Energy Reduction

in High Performance Microprocessors
Nikolaos Bellas� Ibrahim Hajj� Constantine Polychronopoulos� and George Stamoulis

Abstract� In this paper� we focus on low�power design tech�

niques for high�performance processors at the architectural and

the compiler level� We focus mainly on developing methods for

reducing the energy dissipated in the on�chip caches� Energy dis�

sipated in caches represents a substantial portion in the energy

budget of today�s processors� Extrapolating current trends� this

portion is likely to increase in the near future� since the devices

devoted to the caches occupy an increasingly larger percentage

of the total area of the chip�

We propose a method that uses an additional mini cache lo�

cated between the I�Cache and the CPU core� and bu�ers in�

structions that are nested within loops and are continuously oth�

erwise fetched from the I�Cache� This mechanism is combined

with code modi�cations� through the compiler� that greatly sim�

plify the required hardware� eliminate unnecessary instruction

fetching� and consequently reduce signal switching activity and

the dissipated energy�

We show that the additional cache� dubbed L�Cache� is much

smaller and simpler than the I�Cache when the compiler assumes

the role of allocating instructions to it� Through simulation� we

show that� for the SPECfp�	 benchmarks� the I�Cache remains

disabled most of the time� and the
cheaper� extra cache is used

instead� We also propose di�erent techniques that are better

adapted to non�numeric� non loop�intensive code�

Keywords� Special�lowpower��� Low�power�design� Memory�

Power�consumption�model

I� INTRODUCTION

In recent years� power dissipation has become a major design
concern for the microprocessor industry� The shrinking device
size� and the large number of devices packed in a chip coupled
with the large operating frequencies� have led to unacceptably
high levels of power dissipation�
The problem of the wasted power caused by unnecessary ac�

tivity in various parts of the CPU during code execution has
traditionally been ignored in code optimization and architecture
design� Processor architects and compiler writers are concerned
with system performance�throughput and they do little� if any�
thing at all� to eliminate energy�power dissipation at this level�
However� power dissipation is rapidly becoming the major bot�
tleneck in today�s systems integration and reliability� Modern
microprocessors are large power consumers� the UltraSPARC�
II from Sun consumes �	 W maximum power at
�� MHz� the
Pentium Pro Processor consumes � W at
�� MHz� and the
Alpha
����PC chip from DEC consumes
�� W at � MHz�
In general� low�power and high performance are usually two

con�icting goals at all levels of the design hierarchy� For ex�
ample� one common technique for reducing power consumption
is to lower the supply voltage� This reduction in supply volt�
age� however� results in slower circuits� Higher frequencies are
desirable for high performance� but they increase power con�
sumption� Higher activity �and thus utilization� could result
in a larger throughput� but also in higher power� The exces�
sive power consumption of today�s processors is� in part� the

This work was supported by Intel Corp�� Santa Clara� CA

N� Bellas is with the DigitalDNA Systems Architecture Laboratory� Motorola

Inc�� Schaumburg� IL

I� Hajj and C� Polychronopoulos are with the Coordinated Sciences Labora�

tory� Department Of Electrical and Computer Engineering� University of Illinois

at Urbana�Champaign� Urbana� IL

G� Stamoulis is with Intel Corp�� Santa Clara� CA

outcome of very high utilization of their components�
In this paper we develop techniques for energy reduction that

have little or no impact on performance� We focus on reduc�
ing the activity caused by the I�Cache subsystem which is one
of the main power consumers in most of today�s microproces�
sors� The on�chip L� and L
 caches of the
���� DEC Alpha
chip dissipate
�� of the total power of the processor ���� The
StrongARM SA���� processor from DEC� which targets speci��
cally low�power applications� dissipates about
�� of the power
in the I�Cache �
�� In the Pentium Pro processor� the instruc�
tion fecth unit �IFU� and the I�Cache contribute ��� to the
total power consumed ���
The reason for the high power consumption in the I�Cache

subsystem is that the execution rate of a processor depends crit�
ically on the rate at which the instruction stream can be fetched
from the I�Cache� The I�Cache should therefore be able to pro�
vide the data path of the machine with a continuous stream of
instructions� and has therefore very high switching activity� In
addition� the I�Cache drives large capacitance wires to the CPU
core� What is more� today�s caches constitute an ever increas�
ing portion of the die area and the number of transistors of the
processor�
The remainder of the paper is organized as follows� section II

discusses related work and section III provides the motivation
behind our approach� Section IV details the compiler transfor�
mations necessary for our scheme� while sections V and VI de�
scribe the hardware support� and the energy estimation method
we used for the caches� respectively� Section VII presents sim�
ulation results for both energy and performance on a subset of
SPEC�� benchmarks� and section VIII discusses an extension
of the method for the integer benchmarks� The conclusion is
given in section IX�

II� RELATED WORK

Power optimization at the architectural and software levels
has attracted the interest of a number of researchers� A model
that views power from the standpoint of the software that exe�
cutes on a microprocessor and the activity that it causes� rather
than from the traditional hardware standpoint has been pro�
posed in ��� and tested in di�erent architectures ����
In ��� and ��� brief reviews of compiler techniques for power

minimization are presented� As expected� standard compiler
optimizations� such as loop unrolling� software pipelining� etc��
are also bene�cial for the reduction of energy since they reduce
the running time of the code�
More recently� the impact of memory hierarchy in minimiz�

ing power consumption� and the exploration of data�reuse so
that the power required to read or write data in the memory is
reduced� are addressed in �	� and ����
The �lter cache ���� tackles the problem of large energy con�

sumption of the L� caches by adding a small� and thus more
energy�e�cient cache between the CPU and the L� caches� The
penalty to be paid in adding the �lter cache is the increased miss
rates and� hence� longer average memory access time� Although
this might be acceptable for embedded systems for multimedia
or mobile applications� it is not desirable for high�performance
processors� The �lter cache delivers an energy reduction of �	�
for a
���byte� direct mapped �lter cache� while reducing per�
formance by
�� for a set of multimedia benchmarks�

In a similar work in ����� a mechanism is described which
enables the by�pass of the I�Cache by storing the instructions
within loops in an extra bu�er� Only loops with no condi�
tional branching can be accomodated with this method� since
the mechanism assumes that all the instruction in a loop are
stored in the extra bu�er in the �rst iteration�
The work in �� focuses on excessive energy dissipation of

high�performance� speculative processors that tend to execute
more instructions than are actually needed in a program� The
authors use the concept of branch prediction and con�dence
estimation ��
� to detect when the CPU fetches and executes
instructions from a speculative path that has a small proba�
bility to be taken� The CPU stops execution in the pipeline
when there is a large probability of wrong path execution� and
it resumes only when the actual execution path is detected�

III� MOTIVATION AND APPROACH

During a loop execution� the I�Cache unit frequently repeats
its previous tasks over and over again� if the thread of control
during program execution is caught in a loop� the I�Cache unit
fetches the same instructions to the CPU core� and the ID de�
codes the very same instructions� The problem is that the IF
unit does not operate in an e�cient way with respect to power
consumption� but it only tries to satisfy the demand of the ex�
ecution units for high throughput� which is achieved through a
fast �rst level �L�� instruction cache and high bandwidth buses
between the cache and the CPU core� This approach works for
performance� but it unnecessarily performs more work� thus� it
dissipates more power than really needed�
Substantial power gains could be achieved if we could reduce

the amount of instructions that the IF unit fetches� and subse�
quently disable the I�Cache system for all the time that it is not
needed� The most usual method for disabling a unit is clock
gating� i�e�� not allowing the clock ticks to propagate changes to
the output of the unit by ANDing them with a control signal�
This is the basic motivation of the architectural support that

is proposed in this research as was also explained in ���� and
����� All the instructions that belong to a loop can be fetched
only the �rst time the thread of control passes through them�
Subsequently� they can be stored in a special internal cache �the
L�Cache� which is placed between the I�Cache and the CPU
core� Each time the IF unit attempts to fetch an instruction
from within the loop� the instruction that resides in this cache
can be used instead� In the ideal case� the I�Cache unit can
be shut down for the duration of the loop� as it does not need
to operate� and its energy dissipation can be saved� Thus� this
method exploits the locality in the instruction stream� To be
energy prone� this mechanism only accesses the I�Cache and the
L�Cache sequentially� i�e�� in di�erent clock cycles�
The approach advocated in our scheme relies on pro�le data

from previous runs to select the best instructions to be cached�
The unit of allocation is the basic block� i�e�� an instruction
is placed in the L�Cache only if it belongs to a selected basic
block�� After selection� the compiler lays out the target program
so that the selected blocks are placed contiguously before the
non�placed ones� The main e�ort of the compiler focuses on
placing the selected basic blocks in positions so that two blocks
that need to be in the cache at the same time do not overlap in
the L�Cache�
The compiler maximizes the number of basic blocks that can

be placed in the L�Cache by determining their nesting and using
their execution pro�le� The resulting hardware is very simple
and most of the task is carried out by the compiler� We elim�
inate the need for a large L�Cache� thus greatly reducing the
power requirements of the extra cache�

�A basic block is a sequence of instructions with no transfers in and out except

possibly at the beginning or end�

IV� COMPILER ENHANCEMENTS

The selection of basic blocks to be inserted in the L�Cache
is done by the compiler �statically�� i�e�� during compile time�
and not �dynamically� during run time ����
The optimization consists of two distinct phases�
� function inlining� in which the compiler tries to expose as
many basic blocks as possible in frequently executed rou�
tines� This step should be done judiciously since function
inlining can also create performance and locality problems
in the I�Cache� This step aims at exposing as many ba�
sic blocks as possible in frequently executed routines� Our
scheme assumes that no interprocedural basic block allo�
cation can take place� i�e�� at any given time� only basic
blocks that belong to the same function can reside in the
L�Cache� This precaution is taken since the compiler can�
not know a�priori where the linker�loader will place the
functions in the memory address space� Hence� each func�
tion in the source code is considered separately�

� block placement� the main stage of our method� in which the
compiler selects� and then places the selected basic blocks
so that the number of blocks that are placed at the same
time in the extra cache is maximized� To that e�ect� the
compiler avoids placing two blocks that have been selected
to reside at the same time in the L�Cache in the same cache
locations�

The reasoning behind our decision to choose a basic block
as the basic unit of allocation and not a whole loop can be
readily justi�ed by considering the control �ow graph �CFG�
of a typical loop� In most cases� the loop contains basic blocks
which are seldom executed during typical runs� These are blocks
that take care of an exception condition or do error handling�
If the whole loop was to be allocated in the L�Cache� these
basic blocks would occupy space� but they would hardly ever
be used� They would also disqualify frequently executed blocks
from being cached�
The compiler seperates the selected basic blocks from the

non�selected ones� and places all of them in the global address
space� For example� consider the following code�

do ��� i��� n
B�� � basic block
if �error	 then

error handling�
B
� � basic block

��� continue

If the if�statement in the loop is placed between basic blocks
B� and B� in the �nal layout of the code� it may create a con�ict
in the L�Cache� This will happen if the size of the L�Cache is
smaller than the sum of the sizes of the basic blocks B�� B� and
the if�statement� but larger than the sum of the sizes of the basic
blocks B� and B� alone� If we move the if�statement at the end�
and place B� and B� one after the other� we e�ectively reduce
the possibility of an overlap� We identify such cases and move
the infrequently executed code away so that the normal �ow of
control is in a straight�line sequence� This entails the insertion
of extra jump instructions to retain the original semantics of
the code�
The block placement algorithm is delineated in Fig� �� The

object code and pro�le data for the original program are used as
input to our tool� The output produced is an equivalent object
code in which some of the basic blocks have been reordered and
placed in speci�c memory locations� The following subsections
give a detailed description for each of the steps of the method�

A� First step� Nesting computation

The control �ow graph is built for each function of the origi�
nal program in Step �� Note that the program can be either the
original one or the one that has been created after inlining� A

Profile Data

(1)
Nesting comput.
 for each BB.

(2)

BB selection
and placement (3)

Input Code

LabelTree
construction

Global
placement

(4)

Branch
 insertion

(5)

Output code

Fig� �� Block placement overview�

node in the CFG can have none� one� or more than one prede�
cessors� and at most two successors� This is the case when there
is a branch instruction at the end of the basic block� We intro�
duce a slight modi�cation in our CFG� although a procedure
is normally considered as having only one entry� we generalize
this as follows� if there is a function call within a procedure�
the return from this function is declared as a new entry to the
procedure� The reason for this modi�cation is that we do not
want to place basic blocks across procedures� Each procedure�
upon entry� will assume that nothing is in the L�Cache from its
caller� In other words� basic blocks within a loop which has a
function call will not be eligible for caching� This restriction
aims at freeing the linker from a possible burden when it maps
a function body to the memory space� Some linkers try to map
routines that call each other frequently onto contiguous memory
addresses to increase the locality of accesses� An inter�function
basic block allocation would pose additional constraints to the
linker�

Next� in the same step� the tool �nds the loops and the nest�
ing for every basic block ����� A LabelSet�B� for every basic
block B is the set of loops to which B belongs� If B is not
nested� LabelSet�B� � fg� If B is enclosed in loops L�� L�
and L�� then LabelSet�B� � fL�� L�� L�g� These are the same
sets used in ����� In Fig�
� an example is given to describe the
data structures used and the information produced during the
�rst step of the algorithm� A loop nesting is shown in
�a�� the
corresponding CFG in
�b�� and the LabelSets in
�c��

B� Second step� LabelTree construction

In Step
� we construct a directed acyclic graph �DAG� using
the LabelSets as follows� the nodes are the di�erent LabelSets
found in the previous step� There is an arc between two such
LabelSets � l�� l� � if l� is a proper subset of l� �Fig� a�� Our
data structure� dubbed LabelTree� is a tree since no basic block
can have two di�erent nestings�

The LabelTree describes the nesting relationship between ba�
sic blocks� Basic blocks in the same path in the LabeleTree
belong to the same nesting� although in di�erent depths� Ba�
sic blocks that are near the leaves of the LabelTree are deeply
nested� whereas basic blocks that are near the root are not�

B1

B2

B7

B4

B6

L1
L2

L5
L6

L3

L4

L7

B3 : {L1, L2}

B2 : {L1, L2, L4}

B1: {L1, L2, L3}

=S2

=S3

=S1

B2

B1

B3

B4

B5

B6

B7

B8

L1

L2

L7

L8

L5

L6

L3

L4

(a) (b) (c)

B5

L8

B8

B3

B4: {L1, L5, L6, L7} = S4

B5: {L1, L5, L6} = S5

B6: {L1, L5} = S6

B7 : {L1, L8}=S7

B8 : {L1}=S8

Fig� �� First step of block placement�

S1 S2 S4 S7

S3 S5

S8

S6

B4 : 0.3C
B1 : 0.6C
B2 : 0.5C
B5 : 0.1C
B7 : 0.8C
B3 : 0.2C
B6 : 0.7C
B8 : 0.1C

0.9C

0.7C

0.9C

0.5C

0.5C

0.9C

0.9C

0.5C

(0.3C)
(0)
(0)
(0)

(0)
(0.6C)

(0.8C)

(a) (b)

Fig� �� LabelTree�

C� Third step� Basic block selection and placement

Step takes over the main part of our allocation algorithm
�Fig� ���
A well�known NP�complete problem is that of placing objects

with a given value and weight into a knapsack so that the total
value of the placed objects is maximized under the constraint
that their weight does not exceed the capacity of the knapsack�
We only expect to �nd a good heuristic which will place the
most frequently executed basic blocks in the L�cache provided
that their size is smaller than the size of the L�Cache�
The algorithm scans the basic blocks in descending order of

execution frequency� Hence� the most important blocks are the
�rst to be considered and have a greater chance to be placed
in the L�Cache� For every node in the LabelTree we designate
a size� which denotes the position in the L�Cache where a basic
block of the node should be placed in every step of the algo�
rithm� The size should always be less than or equal to the
cache size� otherwise the current basic block cannot be placed
in the L�Cache�
The �rst step is to propagate the e�ect of the size of the basic

block under consideration towards the leaves of the tree rooted
at node N �DOWN TRAV���� Suppose� for example� that the
current basic block is B� in Fig� a� Both nodes B� and B� have
already been considered and placed in the L�Cache� The size
of B� added to the max�size�B��� size�B��� should not exceed
the cache size C� If this is the case� B� is placed in the L�Cache�
In other words� B� will remain in the L�Cache while B� and
B� are executed� and it will not be replaced� This step aims
at placing B� in a di�erent L�Cache position from both B� and

void Allocate�LabelTree T� CacheSize C�

�� T root of the LabelTree� C size of L�Cache ��

for every node N in T set size�N� � 	

for every basic block BB in the program in descending order

of number of times executed do

let N be the node in T that BB corresponds to

�� N is unique ��

if N is the root next

�� we don�t place BB which are not nested ��

old�size�N� � size�N�

fit � DOWN�TRAV�N� BB� C�

if �fit �� FALSE� then continue
 �� next basic block ��

UP�TRAV�N�

put the basic block BB in the L�Cache in position old�size�N�

end for

end Allocate

boolean DOWN�TRAV�TreeNode N� BasicBlock BB� CacheSize C�

if �DOWN�TRAV�FIRST�N� BB� C� then

DOWN�TRAV�SEC�N�

return true

else

return false

end DOWN�TRAV

flag � true

boolean DOWN�TRAV�FIRST�TreeNode N� BasicBlock BB� CacheSize C�

if �N � NULL and flag� then

if �size�N� � size�BB� � C� then

flag � FALSE

else

temp�size�N� � size�N� � size�BB�

end if

for all children of N do

DOWNTRAV�FIRST�N��child�

end if

end DOWN�TRAV�FIRST

void DOWN�TRAV�SEC�TreeNode N�

if �N � NULL� then

size�N� � temp�size�N�

for all children of N do

DOWN�TRAV�SEC�N��child�

end if

end DOWN�TRAV�SEC

procedure UP�TRAV�TreeNode �

while �N��parent� do

N � N��parent

size�N� � max�size�N��child�� among all children

end while
 Fig� �� Placement Algorithm�

B�� If B� overlapped with them� it would have to be fetched
from the I�Cache instead� since it would be replaced by B� or
B� after being executed� This technique maximizes the number
of basic blocks that are placed in the cache and avoids con�icts
between them�
If max�size�B��� size�B���� size�B�� � C� the placement of

B� is not possible� and the algorithm continues with the next
basic block�
Subsequently� the algorithm calls UP TRAV�� which propa�

gates the e�ect of the new placement to the outer blocks� This�
in e�ect� reduces the chance of the outer blocks to be placed in
the L�Cache� which is not bothering at all� since we are mostly
interested in the inner� most frequently executed blocks� In
Fig� a� the annotated LabelTree for the example in Fig�
 is
given with the �nal placement of the basic blocks in b� All the
blocks except B� are placed in the L�Cache �the positions are
in the parentheses and are with respect to the beginning of the
L�Cache��
The algorithm is greedy because it tries to accumulate as

many important basic blocks as possible in the L�Cache� In the
case where the most frequently executed basic blocks are the

most deeply nested� the algorithm will succeed in putting all
of them in the L�Cache provided that the size of each one is
smaller than the cache size�
In practice� we only consider a fraction of the basic blocks

of the program� i�e�� the ones with a substantial contribution
to the execution time� This will speed up the algorithm signif�
icantly� We rule out any basic block with execution time less
than a user�de�ned threshold� The complexity of the algorithm
is O��number of basic blocks��h�� where h is the height of the
LabelTree� The maximum LabelTree height is
d� where d is the
depth of the deepest nested loop �usually a small integer��
A basic block will not be selected for placement in algorithm

Allocate�� if any of the following is true�
� The algorithm �nds that the basic block was too large to
�t in the L�Cache� This can be either because the size
of the block is larger than the cache size� or because it
cannot �t at the same time with other� more important�
basic blocks� The algorithm described in this section is
used to implement this criterion�

� Its execution frequency is smaller than a threshold� and is
thus deemed unimportant�

� It is not nested in a loop� There is no gain in placing such
a basic block in the L�Cache since it will be executed only
once for each invocation of its function�

� Even if its execution is large� its execution density might
be small� For example� a basic block that is located in a
function which is invoked many times might have a large
execution frequency� but it might only be executed a few
times for every function invocation� We de�ne the execu�
tion density of a basic block as the ratio of the number
of times it is executed to the number of times that the
function in which it belongs is invoked�

� Finally� a very small basic block is not placed in the L�
Cache even if it passes all the above criteria� The extra
jump instructions that might be needed to link it to its
successor basic blocks will be an important overhead in
this case�

A basic block is placed in the L�Cache only if it is expected
to stay there for a long period of time without getting replaced�
This in e�ect decouples the communication between the I�Cache
and the L�Cache and reduces the tra�c between them�

C�� Example

We refer to Fig� to show how the algorithm works� We
consider the basic block with the largest contribution in the
execution time �rst� in that case B	� which belongs to LabelSet
S	� Basic block B	 is the �rst to be considered and can be
placed in the L�Cache without any con�ict� We set the variable
size of S	 equal to the size of B	� i�e�� ��C� We also set the
size of all the LabelSets between S	 and the root to ��C�
We continue with B�� which belongs to S�� Basic block B�

can also be placed in the L�Cache since no con�ict arises� The
size variable of S�� S� and S
 are set to ���C� Next� B� is
placed in the L�Cache� but the size of S� and S
 do not change�
Basic block B� is not in a leaf� therefore� we need to use the

DOWN TRAV �� function to propagate the e�ects of the in�
clusion of B� on its descendants� Since size�S	� � size�B�� �
���C � C� we can place B� in the L�Cache� We also set
size�S�� � size�S�� � ��C � ���C � ���C� We continue in
this manner� and we only select a basic block if it does not
create a con�ict with a block that has already been selected�
We notice that B� cannot be placed in the L�Cache because
size�B�� � size�S�� � C�

D� Fourth and �fth steps� Global placement in the memory

Step ��� in our methodology is the placement of the basic
blocks in the global address space� The algorithm takes as input
the placement of the basic blocks with respect to the L�Cache

and tries to minimize the necessary space as much as possible�
Extra jump instructions are inserted in Step ��� to retain the
semantics of the original program�
In Fig� �� a complete example of the original and the restruc�

tured CFG is shown for the code of Fig�
� Blocks B� and B�

will overlap in the L�Cache since B� will be executed only when
the loop of B� exits� On the other hand� if B� overlapped with
B� or B�� it would miss in every execution of the B� � B� loop�

B2

B3

B4

B5

B6

B7

B8

0.5C

1.0C

1.5C
1.6C

2.3C

1.2C

3.1C

B1 B1

B2

B3

B4

B5

B7

B8

B6

1.4C

1.9C

2.2C
2.3C

0.5C

0.7C
0.8C

2.9C

3.7C

4.4C

(a) (b)

Threshold
Address

Fig� �� CFG restructuring example�

The user has the ability to adjust the thresholds in the selec�
tion of the basic blocks in the �rst stage� and trade o� perfor�
mance degradation with power savings� For example� a smaller
basic block frequency threshold will select more basic blocks
for placement� leading to larger energy savings� and� possibly�
to a larger delay� since these basic blocks will need extra jump
instructions to retain the semantics of the code and will create
larger con�icts in the L�Cache� In the extreme case� the user can
either select every basic block to be placed in the extra cache�
or can disable the L�Cache altogether� In the former case� the
scheme emulates a �lter cache organization� whereas� in the lat�
ter case� it emulates the original scheme that has no extra cache�
These two extremes are subsets of our compiler�driven scheme�
The method is very �exible� and individual applications can
choose from a range of caching policies�

V� HARDWARE ENHANCEMENTS

In addition to the compiler enhancement� our scheme requires
extra hardware for the implementation of the L�Cache scheme�
This is shown in Fig� ��
The program counter �PC� is presented to the L�Cache tag

at the beginning of the clock cycle� The L�Cache tag will only
output its tag if the blocked part signal is on� This signal is
generated by the instruction fetch unit �IFU�� and its meaning
is explained later� In that case� the comparator checks for a
match� and if it �nds one� it instructs the multiplexer to drive
the contents of the L�Cache in the data path� At the same time�
the data portion of the L�Cache asserts its output and sends the
new instruction to the data path� The I�Cache is disabled for
this clock cycle� since the signal blocked part is on�
In the case of an L�Cache miss �LCache Hit is o��� the I�

Cache controller activates the I�Cache in the next clock cycle
and gets the referenced instruction from there� At the same
time� this instruction is transfered to the L�Cache� Note that the
L�Cache and I�Cache are only accessed sequentially and never
in parallel� If blocked part � o�� the I�Cache controller activates
the I�Cache without waiting for the LCache Hit signal� In this
way� the L�Cache can be bypassed without a delay penalty�

 I - Cache

PC(31:0)

 Data Path

LCache_Hit

blocked_part

32 - bit
 MUX

L-CacheL-Cache

DataTag

32 - bit
Logic Comp.

P
C

(8
:2

)

P
C

(3
1:

9)

P
C

(8
:2

)

D
Bu

s(
31

:0
)

ICache_Bus(31:0)

LC
a

c
h

e
_B

u
s(

31
:0

)

Fig� �� L	Cache organization�

Recall that the compiler has already laid out the code so that
the basic blocks that are destined for the L�Cache are placed
before the others� A
�bit register is used to hold the address
of the �rst non placed block in the main memory layout� If
during program execution the PC has a value less than that
address� the
�bit comparator will set blocked part � on� else
this signal will be set to o�� In the former case� the machine will
attempt to access the L�Cache �rst� whereas� in the latter case�
it will bypass the L�Cache and it will try to fetch the instruction
from the I�Cache� This way� the machine can �gure out which
portion of the code executes with only an extra comparison�
This simpli�cation is only possible because of the way that

the code has been restructured in the compilation phase� Notice
also that if blocked part � on� the L�Cache can still miss� this
will happen� for example� when the basic block to be placed in
the L�Cache has not been executed before� i�e�� the �rst time the
thread of control passes through it� Therefore� the tag portion
of the L�Cache is still needed�
Finally� we extend the instruction set architecture �ISA�� and

we add an instruction called alloc which marks the boundary
between the selected and the non selected code� This extra
instruction is used to store the address of the �rst non�placed
instruction in the
�bit register� as described in the previous
section� and it is the �rst instruction to be executed upon entry
in a procedure� The ID stage of the pipeline will decode the
instruction and place the address in the register� There is only
one such instruction per function� and its e�ect on performance
is negligible�
The comparator can have a negative impact on the clock cycle

of the machine if its latency cannot be hidden� The actual im�
pact �if any� depends on the speci�c machine� and whether the
comparator will be placed in the critical path of the processor�
In any case� the e�ect on performance should be considered in
a real system during the performance versus energy trade�o�s�

VI� ENERGY ESTIMATION

TABLE I

Memory subsystem configuration in the base machine�

Parameter Con�guration

L� I�Cache ��KB����	

L� D�Cache ��KB����	

We have developed our cache energy model based on the work
by Wilson and Jouppi ���� in which they propose a timing anal�
ysis model for SRAM�based caches ����� Our model uses run�
time information of the cache utilization �number of accesses�
number of hits� misses� input statistics� etc�� gathered during

simulation� as well as complexity and internal cache organiza�
tion parameters �cache size� block size� associativity� banking�
etc��� A ��	 �m technology with � volts voltage supply is as�
sumed� These models are used for the estimation of energy in
both the I�Cache and the L�Cache�

The utilization parameters are available from the simulation
of the memory hierarchy� The cache layout parameters� such
as transistor and interconnect physical capacitances� can be ob�
tained from previous layouts� from libraries� or from the �nal
layout of the cache itself� We use the numbers given in ���� for
a ��	 �m process�

VII� EXPERIMENTAL EVALUATION

A� Simulator Environment

We evaluated the e�ectiveness of our software�hardware en�
hancements by examining the energy savings on a set of SPEC��
benchmarks� The benchmarks were compiled with the MIPSpro
compiler using the �O
 optimization �ag� Hence� we enabled all
the traditional optimizations but we disabled any interprocedu�
ral analysis and inlining� That was necessary in order to test
our own inlining heuristic�

To gauge the e�ect of our L�Cache in the context of a realis�
tic processor operation� we simulated the MIPS
 instruction set
architecture �ISA� using the MINT ��	� and the SpeedShop ����
tool suites� MINT is a software package for instrumenting and
simulating binaries on a MIPS machine� We built a MIPS
 sim�
ulator on top of MINT which accurately re�ects the execution
pro�le of the R����� processor� Table I describes the memory
subsystem con�guration as �cache size � block size � associativ�
ity � cycle time � latency to L
 cache in clock cycles � transfer
bandwidth in bytes per clock cycles from the L
 Cache�� Both
I�Cache and D�Cache are banked both row�wise and column�
wise to reduce the access time and the energy per access �����
We use the tool cacti� described in ����� to estimate the access
time of the on�chip caches� as well as the optimal banking that
minimizes the access time�

The L�Cache was
�� and ��
 bytes� and had a block size
of � bytes� i�e� the size of a MIPS instruction� A larger block
size does not signi�cantly increase the hit rate of the L�Cache�
whereas it negatively a�ects the dissipated energy per access�
The L
 uni�ed cache is o��chip and its energy dissipation is not
modeled�

We also experimented with di�erent scenarios for the user�
given thresholds that guide the basic block selection and place�
ment in the L�Cache �Table II�� A more aggressive scenario re�
sults in larger energy gains at the expense of larger performance
degradation� A frequency threshold of ������ for example� will
force the tool to mark for placement only basic blocks that have
an execution time of at least ����� of the total execution time
of the program� A size threshold of �� instructions will force
the tool to mark only the basic blocks that have at least �� in�
structions� and so on� Di�erent parameters are selected for the
FP and integer programs based on the di�erent features of these
programs� Our experimental methodology was as follows� First�
we ran the benchmarks to collect the pro�le data� The data
were used to drive the inline and the block placement heuris�
tics� The tool� along with the restructuring of the body of the
program� selected various statistics regarding the quality of the
generated code� SpeedShop was used for pro�ling and the MIP�
Spro compiler was used for compilation and code optimization�
The actual simulation was done using MINT� Function inlining
was used only for the SPECint�� benchmarks� Through exper�
imentation� we found out that inlining is more bene�cial when
only leaf functions are absorbed� hence� we limit our inlining
procedure to consider only leaf functions�

B� Results

The percentage of dynamic instructions that cause the ma�
chine to access the L�Cache in the course of program execution
is shown in Table III� This access may result in either a hit or a
miss� This percentage is high for all the SPECfp�� benchmarks�
re�ecting the e�cacy of our approach for these programs� As
expected� a larger L�Cache is more succesful in storing basic
blocks and therefore in disabling the I�Cache for a larger pe�
riod of time� In some cases� even a small L�Cache is capable
of e�ectively shutting�down the I�Cache for the duration of the
program execution� The law of diminishing returns applies here
as well� since a very large L�Cache ���
� instructions� is usually
as succesful as smaller ones� In most cases� a
�� instruction L�
Cache approximates the performance of an in�nite size L�Cache�
On the other hand� most integer benchmarks do not have a

large number of basic blocks that can be cached in the L�Cache�
They are also insensitive to the cache size variation� which is
to be expected since the basic blocks of integer programs are
generally small� Most of the basic blocks of the SPECint��
benchmarks are not nested� or they are nested within a loop
that contains a function call� hence� they cannot be included
in the L�Cache� Integer programs with complex control �ow
graphs� such as interpreters� compilers and so on� have a large
number of di�erent paths in the CFG� These benchmarks have
the worst behavior� Benchmarks with a more regular structure
�compression programs� simulators� etc�� are better suited to
our algorithm�
Table IV shows the energy gains in the I�Cache subsystem

for the three di�erent L�Cache con�gurations� The numbers
are normalized with respect to the energy dissipation of the
original scheme� The energy in the modi�ed con�gurations is
due to both the I�Cache and L�Cache� A result less than one
is desirable since it denotes an improvement in energy or delay
with respect to the original scheme�
The performance overhead of these cache con�gurations with

respect to the original execution time is given in Table V� This is
a full chip simulation that takes into consideration the latency
in the memory hierarchy� the structural hazards in the FPU�
and the data dependency hazards in both the integer unit and
the FPU�
A very important feature of the L�Cache approach is the small

performance overhead� which is vital for high performance ma�
chines� The performance overhead is due to the miss rates in the
L�Caches and the extra jump instructions that are inserted by
the compiler as discussed previously� The scheme gains bene�t
from the very high hit rates of the compiler�managed L�Cache�
An optimal L�Cache has a size of �
	 instructions �i�e�� ����

Kbytes� for the FP benchmarks� Small caches are not very
succesful in disabling the I�Cache� Larger caches� on the other
hand� have larger energy dissipation per access� yet not a much
better hit rate than average sized caches� The energy dissipation
drops as the size increases� but it goes up again for the larger
caches�

VIII� MODIFIED SCHEME FOR INTEGER

BENCHMARKS

Integer benchmarks do not perform well under the loop�based
selection algorithm as we have explained in the previous section�
Most of the basic blocks in the SPECint�� benchmarks are not
nested� hence� they cannot be placed in the L�Cache during
execution�
The previous methodology was based on the detection of

nested basic blocks in loops which did not contain function
calls� These basic blocks were candidates for compiler�driven
placement in the L�Cache� As is evident from the experimental
results� the method is not succesful for a large category of in�
teger benchmarks� such as interpreters and compilers� Figure �

TABLE II

User�given thresholds in the L�Cache experiments�

Experiments Frequency Thres� Size Thres� Exec� Density Thres�

FP INT FP INT FP INT

Aggressive �a� ����� ����� � � � �

Less Aggressive �b� ���� ���� �� � �� �

Moderate �c� �� �� �� � �� �

TABLE III

L�Cache utilization statistics� percentage of instructions that cause

an access to the L�Cache�

Bench� L�Cache size

�� in� �	 in� ��
 in� ��� in� ��� in� ���	 in�

tomcatv ����� 	���� ����� ���
� ����� �����

swim ���� ����� ����� ����� ����� �����

su�cor ����� ����� ����� �
��� ����� �����

hydro�d ����� ���	� ���	� �	��� �	��� �	���

go ��	� ��	� ��	� ��	� ��	� ��	�

compress ����� ����� ����� ����� ����� �����

li ���� ���� ���� ���� ���� ����

perl
���
���
���
���
���
���

TABLE IV

Normalized energy relative to the base machine for a ����byte and

����byte extra L�Cache�

Benchmark ��� B L�Cache ��� B L�Cache

�a� �b� �c� �a� �b� �c�

tomcatv ����� ����� ����� ���	� ����
 ����

swim ����� ����
 ���	� ����� ���	� �����

su�cor ��	�
 ����� ����� ����� ���
� ���
�

hydro�d ��	�
 ��	�
 ��	�� ����� ����� �����

go ����� ����	 ���
� ����� ����	 ���
�

compress�� ��
�� ��
�� ��
�� ��
�� ��
�� ��
��

li � � � � � �

perl ����	 ���	 ���	� ����	 ���	 ���	�

gives insight into the failure of the algorithm for some of the
integer benchmarks�

Shown is the classi�cation of the dynamic mix of instruc�
tions for the most troublesome SPECint�� benchmarks for a
����Kbyte L�Cache� An instruction belongs to one of the six fol�
lowing categories� �P� if it has been selected by the algorithm
to be positioned in the L�Cache� �U� if it is in a basic block with
a small execution frequency �unimportant�� �NN� if it is in a
block with large execution frequency but not nested in a loop�
�SD� if it is in a nested block with large execution frequency but
small execution density� �SS� if it belongs to a nested block with
large frequency and execution density but small size� and �L� if
it satis�es all the above criteria but does not �t in the L�Cache�
For this experiment� the frequency threshold is �

�����
of the ex�

ecution time of the program� the execution density threshold is
�ve executions per function invocation� and the size threshold
is �ve instructions�

The single most important reason that disquali�es the basic
blocks of the integer benchmarks from being cached is nesting�
Most of the basic blocks do not belong to a loop� or they belong
to a loop that has a function call �	�� of them�� More than
��� of the basic blocks have small execution density�

The problem seems to be inherent to the structure of integer

TABLE V

Normalized delay relative to the base machine for a ����byte and

����byte extra L�Cache�

Benchmark ��� B L�Cache ��� B L�Cache

�a� �b� �c� �a� �b� �c�

tomcatv � � � � � �

swim � � � � � �

su�cor � � � � � �

hydro�d � � � � � �

go ����� ����� ����� ����� ����� �����

compress�� ���
� ����� ����� ����� ����� �����

li � � � � � �

perl � � � � � �

0

10

20

30

40

50

60

70

80

90

100

go
li

perl
vortex

aver.

P
U
NN
L
SD
SS

Fig�
� Instruction placement results for the SPECint�� benchmarks with

a ���	byte L	Cache�

programs� especially when they are written in C�C��� This
programming methodology favors small sections of sequential
code� procedural abstraction �many functions�� and lack of very
deeply nested loops� The execution time is distributed among
a larger number of basic blocks� many of which do not execute
many times per function invocation� An alternative approach
for selection of blocks for the L�Cache is therefore appropriate
for these programs�
The proposed solution selects a function and places its most

important basic blocks permanently in the L�Cache� In other
words� they are not replaced when the thread of control leaves
the function� Naturally� we select the function with the largest
contribution in the execution time� as this has been designated
by the pro�le data� The method consists of two steps as before�

A� Function inlining and block placement

Before placement� our method performs function inlining to
maximize the gains of this approach� The function with the
largest execution time may contain function calls to other func�
tions� If these functions are inlined� the contribution of the
original function in the total execution time will increase�
After inlining� the heuristic selects the most frequently ex�

ecuted basic blocks of the inlining function� This selection is
based on user�given compiler options� If all these basic blocks
of the function �t in the L�Cache� the block placement algo�
rithm will proceed to place them all� The size of the L�Cache is
therefore important� unlike in the loop�based heuristic in which
the integer benchmarks were almost insensitive to L�Cache size
variations�
In general� the problem can take the form of the �	
 Knapsack

problem which is NP�complete �
��� Given a �nite set U of
basic blocks bb� each one with a size s�bb�� a value n�bb� which
is the number of executed instructions in bb� and a positive L�
Cache size C� �nd a subset U � � U of basic blocks such thatP

bb�U�
s�bb� � C and such that

P
bb�U�

n�bb� is as large as
possible� Since a basic block can either be placed in the L�
Cache or not �we cannot place part of the block�� an optimal
solution requires exponential time in the number of basic blocks�
We apply a greedy approximation algorithm which works as

follows� we order the set U of basic blocks by the �key�� n�bb�
s�bb�

so

that n�bb��

s�bb��
� n�bb��

s�bb��
� � � � � n�bbn�

s�bbn�
� Starting with U � empty� we

proceed sequentially through the list� each time adding a basic
block bb whenever the sum of the sizes of the blocks already in
U � and bb does not exceed C�
In addition� we perform another greedy procedure in which

the list has been sorted using only the number of cycles n�bb�
of each basic block� so that n�bb�� � n�bb�� � � � � � n�bbn��
The best solution among the two is selected� A near optimal
solution is obtained using this approach in our experiment�

B� Experimental evaluation of the modi�ed scheme

In the new experiments we did not set any size or density
constraints� Since the basic blocks are placed in the L�Cache
when the selected function is executed for �rst time and remain
there afterwards� it s not necessary to pose extra limitations in
their selection�
The memory hierarchy subsystem is described in Table I� The

energy gains of the L�Cache is given in Table VI� The results are
very encouraging for benchmarks that have poor performance
under the initial method� Similar results are obtained for most
of the integer benchmarks that do not score well under the old
scheme �e�g�
���li�
��perl��

TABLE VI

Normalized energy relative to the base machine for a ����byte and

����byte L�Cache	 using the modified scheme for integer benchmarks�

Benchmark ����byte L�Cache ����byte L�Cache

compress�� ��
�
 �����

li ���
� �����

perl ��
�� ��
��

The execution time overhead is negligible in this scheme for
an L�Cache of ����Kbyte� This is because the hit rate is almost
���� and the L�Cache is large enough to accommodate all the
important basic blocks of a function�

IX� CONCLUSIONS

In this research� we have developed techniques for hard�
ware�software co�design in high�performance processors that re�
sult in energy�power reduction at the system level� To that
e�ect� we make a more judicious use of one of the most power�
consuming modules of a CPU� the I�Cache� The techniques we
descibed are orthogonal to the standard circuit or gate level
techniques that are traditionally used by designers to reduce
power and can therefore be used to further reduce power con�
sumption without impairing performance�

Since performance is the most important objective of today�s
high�end microprocessors� no energy reduction technique will be
acceptable� unless it has only a marginal negative e�ect on the
execution time� or unless its overhead can be hidden by other
compiler�architectural techniques� If this is the case� even a
moderate energy reduction will be welcome�
Most of the energy gains in high�performance and embed�

ded processors alike will be extracted from the high level of
the design �ow� when the designers have not yet committed to
major design decisions� Major energy gains can be obtained if
the compiler and the hardware are designed with low energy in
mind�

References

��� J� Edmondon� �Internal organization of the Alpha ����	� a ����MHz �	�bit

quad�issue CMOS RISC microprocessor�� Digital Technical Journal� vol� ��

no� �� pp� �������� �����

��� D� Dobberpuhl� �The design of a high�performance low�power microproces�

sor�� in Proceedings of the International Symposium of Low Power Electronics

and Design� pp� ������ �����

��� S� Manne� D� Grunwald� and A� Klauser� �Pipeline gating� Speculation

control for energy reduction�� in Proceedings of the International Symposium

of Computer Architecture� pp� �����	�� ���
�

�	� V� Tiwari� S� Malik� and A� Wolfe� �Power analysis of embedded software�

A �rst step towards software power minimization�� IEEE Transactions on

VLSI Systems� vol� �� pp� 	���		�� Dec� ���	�

��� V� Tiwari� S� Malik� A� Wolfe� and T�C� Lee� �Instruction level power

analysis and optimization of software�� Journal of VLSI Signal Processing�

vol� ��� Aug� �����

��� V� Tiwari and S� Malik and A� Wolfe� �Compilation techniques for low

energy� An overview�� in Proceedings of the IEEE Symposium on Low Power

Electronics� Oct� ���	�

��� H� Mehta� R� M� Owens� M� J� Irwin� R� Chen� and D� Ghosh� �Techniques

for low energy software�� in Proceedings of the International Symposium of

Low Power Electronics and Design� pp� ������ Aug� �����

�
� J� Diguet� S� Wuytack� F� Catthoor� and H� De Man� �Formalized method�

ology for data reuse exploration in hierarchical memory mappings�� in

Proceedings of the International Symposium of Low Power Electronics and

Design� pp� ������ Aug� �����

��� S�Wuytack� F�Catthoor� L� Nachtergaele� and H� De Man� �Power explo�

ration for data dominated video applications�� in Proceedings of the Inter�

national Symposium of Low Power Electronics and Design� �����

���� J� Kin� M� Gupta� and W� Mangione�Smith� �The �lter cache� An energy

e�cient memory structure�� in Proceedings of the International Symposium

on Microarchitecture� pp� �
	����� Dec� �����

���� R� Bajwa� M� Hiraki� H� Kojima� D� Gorny� K� Nitta� A� Shridhar� K� Seki�

and K� Sasaki� �Instruction bu�ering to reduce power in processors for

signal processing�� IEEE Transactions on VLSI Systems� vol� �� pp� 	���

	�	� Dec� �����

���� E� Jacobsen� E� Rotenberg� and J� Smith� �Assigning con�dence to condi�

tional branch prediction�� in Proceedings of the International Symposium on

Microarchitecture� pp� �	������ �����

���� N� Bellas� I� Hajj� C� Polychronopoulos� and G� Stamoulis� �Architectural

and compiler support for energy reduction in the memory hierarchy of high

performance microprocessors�� in Proceedings of the International Sympo�

sium of Low Power Electronics and Design� pp� ������ Aug� ���
�

��	� A� Aho� R� Sethi� and J� Ullman� Compilers� Principles	 Techniques and

Tools� Reading� MA� Addison�Wesley� ��
��

���� S� McFarling� �Program optimization for instruction caches�� in Proceed�

ings of the International Conference on Architectural Support for Program�

ming Languages and Operating Systems� pp� ������ June ��
��

���� S� Wilson and N� Jouppi� �An enhanced access and cycle time model for

on�chip caches�� tech� rep�� DEC WRL ���� July ���	�

���� N� Bellas� I� Hajj� and C� Polychropoulos� �A detailed� transistor�level

energy model for SRAM�based caches�� in Proceedings of the International

Symposium on Circuits and Systems� �����

��
� J� E� Veenstra and R� J� Fowler� �MINT� A front end for e�cient sim�

ulation of shared�memory multiprocessors�� in Proceedings of the Second

International Workshop on Modeling	 Analysis	 and Simulation of Computer

and Telecommunication Systems
MASCOTS�� pp� �������� ���	�

���� SpeedShop User�s Guide� Silicon Graphics� Inc�� �����

���� M� Garey and D� Johnson� Computers and Intractability� New York� NY�

W�H�Freeman � Co�� �����

